Fermentation Management

Annick Mercier

Business Area Manager, Caribbean and North America

Lallemand Biofuels & Distilled Spirits

West Indies Rum & Spirits Producers' Association Inc.

Place: Caribbean Distilling Seminar, St LuciaDate: April 17^{th,} 2024

Presentation Overview

- Why are we talking about Fermentation Management and how do we do it?
- Tailoring Processes for Yeast Success:
 - Contamination and pH
 - Yeast choices based on their characteristics
 - Osmotic pressure and very stressful environments
- Putting everything together into a case study

The Yeast is Queen

Yeast is critical to the production of ethanol and flavor.

Yeast is alive: Understanding your yeast, its physiology, and how to optimize the environment, is essential for optimal ethanol production.

Impacts of Poor Fermentation Management

Yield = A KPI for Everyone

Yield – How much "Product" we get from the "Inputs"

Recovery

Why Do We Need to Calculate Our Yields?

How efficiently do we work? What is the impact on the quality of the spirit?

Room for improvements

Ethanol Yields From Glucose

Tracking Information!

Considerations: Substrate addition Yeast cell counts Fermentation rate \geq Gravity / Brix drop \geq Carbohydrate depletion \succ Alcohol formation \succ pH, acidity: Indicators of \geq sanitation control Temperature Time to completion

What's your corrective action plan?

Example of a Fermentation Tracking Sheet

Example of a Fermentation Tracking Sheet

Impacts of Poor Fermentation Management

Tailoring Processes for Yeast Success

Tools Distillers Have to Cater to Yeast's Biology

Yeast Stress

Healthy Yeast

Monitoring Fermentations

Microscopes – Extremely powerful tools in a Distillery!

- **Direct microscopy** will show up presence of bacteria in a sample of wort, beer or yeast
- **Gram stain** will detect presence of either Gram positive or negative bacteria
- Slide culture will show micro-colonies of yeast/bacteria after a few hours' growth on slide with thin film of agar
- Yeast counting and viability

Assessing Fermentation Progress

Ethanol Technology Institute

Bacterial Reproduction – Binary Fission

Bacteria multiplies rapidly and keeps multiplying!

Impacts of Contaminants

Contamination events occur when bacterial populations in fermentation outgrow a healthy yeast population.

Toxicity of Acetic Acid

Generic Dissociation Equilibrium Equation for Acetic Acid $CH_3COOH \leftrightarrow CH_3COO^- + H^+ (pKa=4.76)$

Undissociated weak acids passively diffuse into the cell

0.8% w/v Lactic acid **0.05 - 0.1%** w/v Acetic acid

pH Stress

Yeasts have an *ideal* pH range

Managing pH

It's important to understand how you can impact the pH of your fermentations:

- Keep acid additions to a minimum
- Try to edge up pH
- Reduce the production of organic acids through good hygiene practices

Lallemand Data

But What is the Right and Most Efficient Yeast Strain?

Profitability Calculations

Profitability Calculations

Yeast and Substrate Choice = Potential Benefits

Fermentation Temperatures

Yeast has an ideal temperature window 24°- 34°C (75°- 95°F)

• Temperatures above or below the window will impact yeast health and flavor

Yield

High temperature stress leads to:

- Alteration to the cell membrane
- Loss of enzyme activity
- Shift of metabolites towards defense
- Increased sensitivity to ethanol
- Stress responses

Consider Your Fermentation Environment and Stress Factors

Osmotic Stress

Managing Osmotic Stress – In Starch Substrates

SSF on Bourbon Mash

Glucose — Ethanol — DP4+ — DP3 — DP2

Managing Osmotic Stress – In Molasses/Syrup Substrates

©2022 Lallemand Biofuels & Distilled Spirits.

Glycerol = \$

Institute

Yeast, the man's best friend. Joana Tulha et al., 2012

Why Do Yeast Need Nutrition?

What are the Economical Justifications?

	Ferm Hours	#Ferms/Year	%ABV Drop	Liters EtOH/Year*	Increase Liters/Year
Plant 1	55h	1000	10,0%	10,000,000 L	NA
Nutrient gain	50h	1100	10,0%	11,000,000 L	1,000,000 L
Plant 2	70h	1000	10,0%	10,000,000 L	NA
Nutrient gain	60h	1167	10,0%	11,666,667L	1,666,667 L
Plant 3	80h	1000	10,0%	10,000,000 L	NA
Nutrient gain	56h	1429	10,0%	14,285,714 L	4,285,714 L
Plant 4	70h	1000	10,0%	10,000,000 L	NA
Nutrient gain	70h	1000	10,5%	10,500,000 L	500,000 L
Plant 5	70h	1000	10,0%	10,000,000 L	NA
Nutrient gain	60h	1167	10,5%	12,250,000 L	2,250,000 L

*Assuming working fermenter volume of 100,000L

Effect of Pitching Rate on Kinetics

Fermentation Case Study

American Agave Fermentation

- Going from a typical 5% to 12% abv fermentation
- - Protocol Adjustments Innovative protocol
 - Heavy nutrient loading
 - Heavy yeast loading (Correct strain had **huge** impacts here)
 - Treat our yeast well!
 - pH adjustments

Fermentation Case Study

Going from a typical 5% to 12% abv fermentation

Typical American Agave Ferm...

- 2-3 wks long
- 5-6% ABV, maybe 7%
- Low efficiency Yield

- High Labor and Overhead Cost + Energy
- High water and energy use per Liter EtOH
- Our input doesn't go as far.

Charleston Distilling Agave Ferm...

- 1wk long
- 12% ABV
- High Efficiency Yield

- <1/4 the labor/overhead per liter EtOH
- <1/2 the water and energy use per L EtOH
- Input gets utilized to full potential

<u>t</u>SI

Conclusion: Opportunities For Efficient Fermentation Management

Distillers Can Cater to Yeast's Biology By Considering The Yeast Environment!

Track your data!

Thank you!

Questions?

